Acute and chronic viral hepatitis

Pavel Chalupa

Dep. of Infectious and Tropical Diseases First Faculty of Medicine Charles University in Prague

2018/2019

Discovery of aetiological agents of VH

- 1965 Hepatitis B surface antigen (HBsAg) isolated (Blumberg)
- 1973 Hapatitis A virus (HAV) identified (Feinstone)
- 1977 Delta agent (HDV) identified
- (Mario Rizzetto)
- 1985 recombinant DNA technology
 - 1989 HCV identified (Houghton)
 - 1990 HEV identified (Bradley)
 - 1995 HGV identified

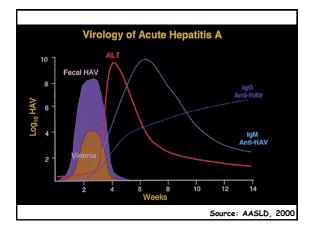
Etiological agent	HAV enterovirus 72	HBV	HCV	
Family	Picornaviridae	Hepadnaviridae	Flaviviridae	
Genus	Hepatovirus	Orthohepadnavirus	Hepacivirus	
Size	27-28 nm	42 nm	30-60 nm	
Genom	RNA	DNA	RNA	
Number of genotypes	4 only 1 serotype	8 (AH)	> 6 main genotypes > 120 subtypes	
Incub. period (days)	15-50	30-180	15-150	
Transmission: - fecal-oral	yes	по	110	
- parenteral	rarely	yes	yes	
- sexual contact	rarely	yes	rarely	
- perinatal	yes	yes	rarely	
Chronicity	по	newbornes >90%, immunocompetent adults < 5%, imunocompromised adults > 50%	55 - 85%	
Diagnostic	anti-HAV IgM	HBsAg, HBeAg and anti-HBc IgM	anti-HCV HCV RNA	
Fulminant course	0,1%	0,1 - 1%	extremely rarely	
Active and pasive immunization	yes	yes	no	

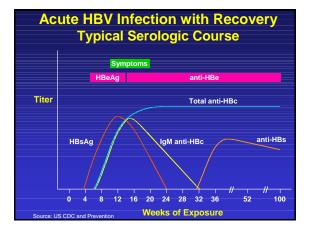
Etiological agent	HDV (delta agent)	HEV (swHEV)	GBV-C (HGV) Nnn-pathogenic for liver		
Family		Hepeviridae	Flaviviridae		
Genus	enus Deltavirus E				
Size	35-37 nm	27-34 nm			
Genom	RNA	RNA	RNA		
Number of genotypes	3 (I, II, III)				
Incub. period (days)	30-180	15-60			
Transmission; - fecal-oral					
- parenteral		rarely			
- sexual contact		rarely			
- perinatal					
Chronicity	co-infection < 5% superinfection 80-90%	NO, but exceptions: Pts after organ transplantations, with malignancy, HIV+ pts	Inhibition of HIV replication progression is slower		
Diagnostic	anti-HDV IgM, HBsAg	anti-HEV IgM and/or HEV RNA	anti-HGV, HGV RNA		
Fulminant course	co-infection 1% superinfection 5%	1-2%, 3rd trim. grav. 21% (GT 1 and GT 2)			
Active immunization against HB		recombinant vaccine routine used in China			

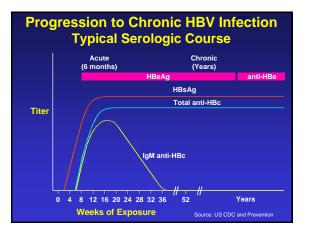
HFV

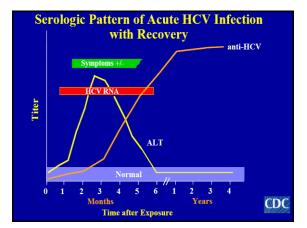
- In December 1994, researchers published evidence for the transmission of the enteric agent responsible for sporadic non-A, non-E hepatitis to rhesus monkeys
- Virus-like particles (27-37 nm in diameter) were detected in human stool extracts from French patients and in the liver and stool of the inoculated animals
- The authors provisionally named agent hepatitis French (for origin) virus or HFV
- Analysis of the viral genome indicated that it contained double-stranded DNA
 - (Journal of Gastroenterology and Hepatology 2001;16(2):124-131)
- We know now, that this discovery was not correct = HFV as well as HF do not exist

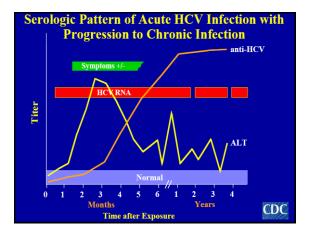
HEV resistance on heat I.

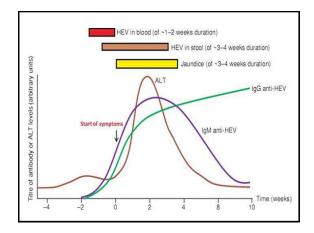

Heating the food to an internal temperature of 71 °C for 20 min is necessary to completely inactivate HEV

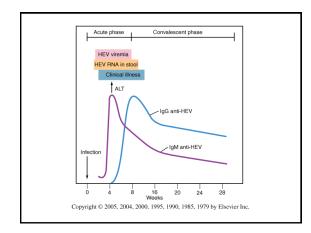

(Barnaud E. et al.: Thermal inactivation of infectious hepatitis E virus in experimentally contaminated food. Applied and Environmental Microbiology 2012;78(15):5153-9)

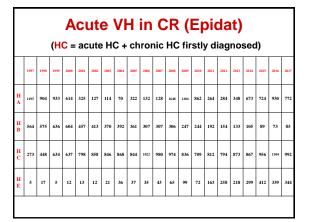

HEV resistance on heat II. (Feagins AR et al. Int J Food Microbiol 2008;123:32-37)

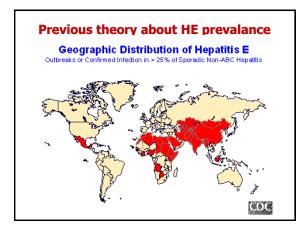

Temp. (°C)	Time (min)	Cooking methods	Result
56 °C	30′- 60′	medium rare	HEV is resistant
60 ℃	60´	medium	HEV is residual but alive
66 °C	10'- 60'	medium well- cooked	HEV inactivation
70-71 °C	10'- 60'	well done	HEV inactivation

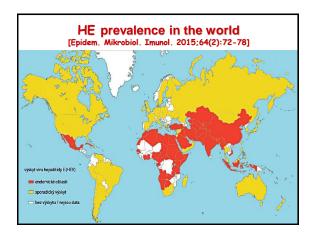

	Anti HAV IgM	HBs Ag	HBe Ag	Anti HBc IgG	Anti HBc IgM	Anti HBs	Anti HCV	Anti HBe	Anti HEV IgM
Acute HA	+								
Acute HB		+	+		+				
HBeAg-positive chronic HB		+	+	+					
HBeAg-negative chronic HB		+		+				+	
Postvaccine immune HBV						+			
Chronic or recent HCV infection							+ and HCV RNA		
Acute HE									and/or HEV RNA

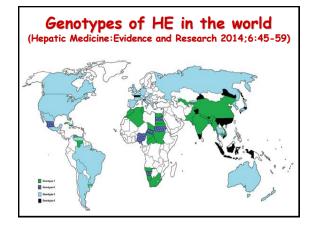


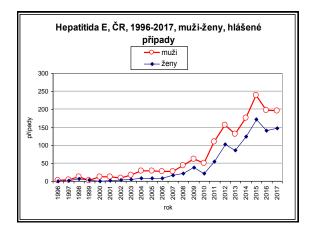


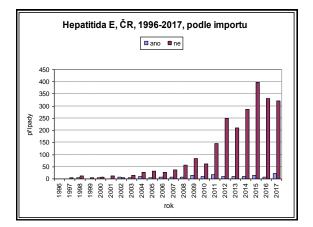


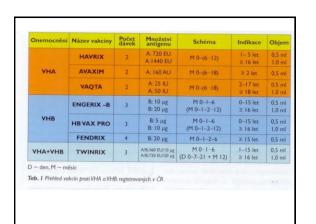


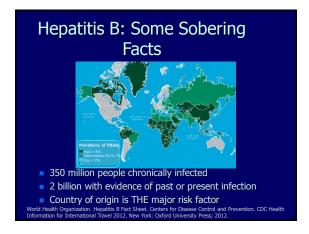












	Current U	ronic HB		
	HBeAg		Anti-H	Be
V DNA	Immune Tolerant		Inactive Carrier State	Reactivation
Liver	Minimal inflammation	Chronic active	Mild hepatitis and minimal fibrosis	Active inflammation

Subset of Agents Reported to Cause HBV Reactivation

Class	Agents
Corticosteroids	Dexamethasone, methylprednisolone, prednisolone
Antitumor antibiotics	Actinomycin D, bleomycin, daunorubicin, doxorubicin, epirubicin, mitomycin-C
Plant alkaloids	Vinblastine, vincristine
Alkylating agents	Carboplatin, chlorambucil, cisplatin, cyclophosphamide, ifosfamide
Antimetabolites	Azauridine, cytarabine, fluouracil, gemcitabine, mercaptopurine, methotrexate, thioguanine
Monoclonal antibodies	Alemtuzumab, rituximab
Others	Colaspase, docetaxel, etoposide, fludarabine, folinic acid, interferon, procarbazine
Yeo W, et al. Hepatology. 2006;4	13:209-220.

HBV Reactivation: Overview

- Clinical syndrome characterized by an increase in HBV DNA and ALT/AST with or without symptoms or jaundice
- Occurs in pts with active (HBsAg+) and resolved (HBsAg-, anti-HBc+) HBV infection
- Wide clinical spectrum
- Ranges from silent to acute liver failure (fibrosing cholestatic hepatitis)
- Can occur during treatment with many immunosuppressive agents
- May also occur up to 12 mos after treatment
- Preventable by antiviral prophylaxis
 Di Bisceglie AM, et al. Hepatology. 2015;61:703-711.
 Perrillo RP. et al. Gastroenterology. 2015;148:221:244.

Slide credit: clinicaloptions.com

Treatment of HCV with direct-acting antivirals (DAAs) may cause reactivation of HBV (Clinical Practice Guidelines, EASL 2017) Patients fulfilling the standard criteria for HBV

treatment should receive nucleos(t)ide analogue (NA) treatment

HBsAg-positive patients undergoing DAA therapy should be considered for concomitant NA prophylaxis until week 12 post DAA, and monitored closely

HBsAg-negative, anti-HBc positive patients undergoing DAA should be monitored and tested for HBV reactivation

J Hepatol 2017;67:370-98

HBV Reactivation (HBVr) Risk Based on Serologic Status and Immunosuppressive

Poter	icy	
Risk Level (anticipated incidence of HBVr)	Serological Risk Status	Immunosuppressive Agent Risk Status
High (>10% of cases)	HBsAg+, high HBV DNA, or HBeAg+	B-cell-depleting agents (are used in pts with laukemias, non-Hodgkin lymphoma, cryoglobulinemia, inkumatoid arthritis, idopatric thromboophenic purpura) – ritusimak (ark-Co2d), otalumumab Systemic chemotherapy Moderate/high-dose corticosteroids
Intermediate (1% to 10% of cases)	HBsAg-, anti-HBc+, anti-HBs-	TNF inhibitors – etanercept, adalimumab, certolizumab, infliximab Tyrosine kinase inhibitors – imatinis, neterinis Other cytokine and integrin inhibitors – abatarept,ustekinumab, natalizumab, vedolizumab Transarterial chemoembolization Low/moderate/high-dose corticosteroids
Low (<1% of cases)	HBsAg-, anti-HBc+, anti-HBs+ (anti-HBs positivity may provide additional protection against HBVr)	Methotrexate Azathioprine G-mercaptopurine Low-dose corticosteroids
moderate-dose co	steroids (> 20 mg prednisone daily c orticosteroids (10-20 mg prednisone steroids (< 10 mg prednisone daily or	daily or equivalent) for ≥ 4 weeks or

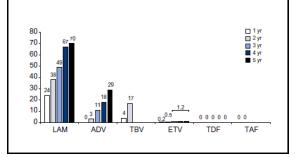
New nomenclature for the chronic states of HBV infection

- Phase 1: HBeAg-positive chronic HBV infection previously "immune tolerant" phase
- Phase 2: HBeAg-positive chronic hepatitis B
- Phase 3: HBeAg-negative chronic HBV infection
 previously termed "inactive carrier" phase
- Phase 4: HBeAg-negative chronic hepatitis B
- Phase 5: HBsAg-negative phase
 also known as "occult HBV infection"
 ____(J Hepatol 2017;67:370-98)

Evolution of Chronic HBV Therapy Over Time Peginterferon alfa-2a Entecavir Tenofovir Lamivudine 1990 1998 2008 Interferon alfa-2b Adefovir Telbivudine

Effects of interferon alfa

- IFN alfa inhibits the synthesis of viral nucleid acids and structural and nonstructural viral proteins
- Immunomodulatory effect:
- IFN alfa increases the activity of cytotoxic T lymphocytes (CTLs) and NK cells, stimulates T lymphocytes and macrophages to the production and secretion of next cytokines
- IFN alfa increases the expression of HLA antigens of the 1st class on the health and viral inficated cells and therefore inficated hepatocytes are then more sensitive to CTLs


Nucleos(t)ide analogues

*famciklovir – analogue of deoxygunosin *lamivudine (3TC, LAM) – analogue of deoxycytidin *adefovir dipivoxil (ADV) – analogue of dAMP *tenofovir – similar as ADV TDF = tenofovir disoproxil fumarate TAF = tenofovir alafenamide *entecavir (ETC) -analogue of deoxyguanin *emtricitabine (FTC) – *analogue of cytosinu* *clevudine (LFMAU) –*analogue of pyrimidin* *telbivudine (LdT) – *analogue of L-deoxythymidin*

- HBV DNA >2,000 IU/ml
- Elevated ALT and/or at least moderate histological lesions (i.e. HBeAg-positive or HBeA-negative chronic HB)
- All cirrhotic patients with detectable HBV DNA
- The prevention of mother to child transmission in pregnant women with high viremia (i.e. > 200 000 IU/ml) - Czech recommendation (from SEP 2017) is to use tenofovir (TDF) from 24th to 28th week of gravidity and stop this prophylaxis during the next 12 weeks after the birth
- Prevention of HBV reactivation in patients requiring immunosuppression or chemotherapy
- Patients with HBeAg-positive chronic HBV infection with normal ALT and high HBV DNA (i.e. previously termed "immune tolerant" phase) if they are older than 30 years
- Patients with severe acute HB, characterised by coagulopathy or protracted course, should be treated with nucleos(t)ide analogue (NA) therapy and considered for liver transplantation
- Tenofovir (TDF) is recommended for pregnant women with CHB and dvanced fibrosis or cirrhosis

Duration of th	ne therapy of o	chronic HB
	HBeAg pos.	HBeAg neg.
PEG-IFN alfa	48 wks	48 wks
Nucleos(t)ide analogues (LAM,ADV,TDF,ETC)	To HBeAg disappearance and next 12 months	To HBsAg disappearance X HBsAg persistency very often to the end of the life
Initiation of	HBV DNA	HBV DNA
antiviral therapy	>2 000 IU/mL (>10 ⁴ copies/mL)	>2 000 IU/mL (>10 ⁴ copies/mL)

Cumulative incidence of HBV resistance for lamivudine (LAM), adefovir (ADV), telbivudine (TBV), entecavir (ETV), tenofovir (TDF) and tenofovir alafenamide (TAF) in pivotal trials in nucleos(t)ide-naïve patients with chronic HB (Hepatology 2014;60:313A-317A)

C (0

Long-term Oral HBV Therapy is Highly Effective

- Suppresses HBV DNA^[1,2]
- Normalizes ALT^[2,3]
- Prevents fibrosis progression^[3,4]
- Promotes fibrosis regression, even in cirrhosis^[4]
- Prevents and even reverses hepatic decompensation^[1]
- Reduces, but does not eliminate, the risk of HCC^[1,5]
- Long-term therapy is effective . . . but low rates of HBsAg $loss^{[6]}$

Lim VS, et al. Gastroenterology. 2014;147:152-1612. Chang TT, et al. Hepatology. 2010;51:422-430.
 Zoutendjik et al. Gust 2018/257269-765. A Morcelin P, et al. Lancet. 2013;81:468-475.
 Spatheodoridis GV, et al. J Hepatol. 2015;62:363-370. 6. Papatheodoridis GV, et al. Hepatol. 2015;63:1481-1492.

Long-term Oral HBV Therapy: Downsides

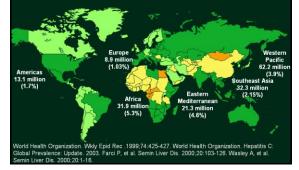
- Toxicity
 - Potential for renal, bone complications with TDF
- Resistance
- High with lamivudine (not preferred by guidelines)^[1]
- Very low with entecavir—unless already LAM resistant^[2]
- None with TDF in clinical trials (similar expected with TAF)^[3]
- Cost

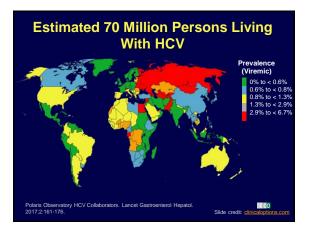
C C C

Adherence

 Hadziyannis SJ, et al. Hepatology. 2000 (32:847-51.
 2. Gish SR, et al. Gastroenterology. 2007;133:1437-44. 3. Buti M, et al. Dig Dis Sci 2015;60:1457-1484.

PegIFN vs Nucleos(t)ide Analogues PealFN Nucleos(t)ide Analogue Con Pro Pro Con SQ administration PO administration Finite course of Need for long-term or indefinite Frequent AEs Infrequent AEs therapy No resistance Contraindicated in . Safe at all stages of therapyPotential for drug resistance Higher rate of HBeAg loss in patients with cirrhosis, in disease, including decompensated pregnancy, with acute hepatitis B, 1 vr cirrhosis† Higher rate of HBsAg loss with Safe in immuno-. and who are compromised populations Selected drugs short duration immunosuppressed . therapy' probably safe in

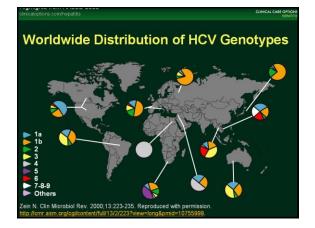

*Particularly for HBeAg-positive patients with genotype A infection. *Recent case report of lactic acidosis in severe liver failure.

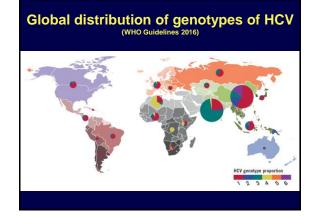

.ok AS, et al. Hepatology. 2007;45:507-539. Lok AS, et al. Hepatology. 2009;50:661-662. Lok AS. Hepatology. 2010;52:743-747. Buster EH, et al. Gastroenterology. 2008;135:459-467. Lange CM, et al. Jonatology. 2009;50:001. 2006

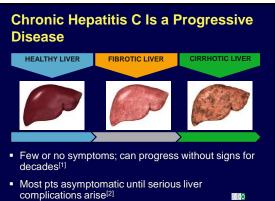
pregnancy

AASLD clinicaloptions.com/hepatitis

Screening: Identifying Estimated 170 Million Persons With HCV Infection Worldwide

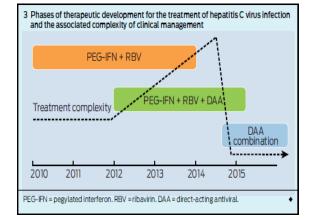


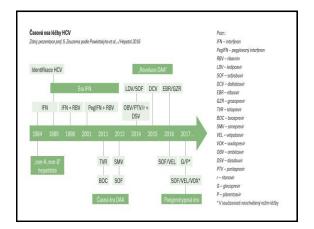



HCV Infection Among Persons Who Inject Drugs (PWIDs)

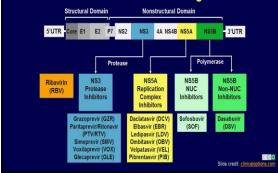
HCV treatment must be coupled with harm reduction measures to reduce total infections

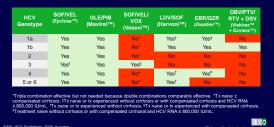



edit: clir


1. CDC. MMWR Morb Mortal Wkly Rep. 1998;47(RR-19):1-39

Nearly Everyone With HCV Can Now Be Treated Successfully

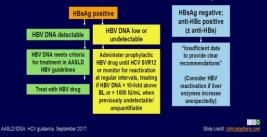

- Very high SVR rates; therapies highly tolerable
- All-oral therapy for almost every pt



Approved DAAs From Multiple Classes: **Basis of 2018 Combination HCV Regimens**

EASL 2018 HCV Treatment Guidelines

Recommendations for treatment-naive patients and patients previously treated with pegIFN/RBV ± SOF or SOF + RBV, ± compensated cirrhosis



HCV Guide es. 2018. In press.

Dostupné varianty IFN-free režimů pro jednotlivé genotypy HCV (<i>DP ČHS ČLS JEP 2017</i>)						
kombinace genotypy HCV						
	GT 1	GT 2	GT 3	GT 4	GT5a6	
sofosbuvir/ledipasivir ± ribavirin	ano	ne	ne	ano	ano	
sofosbuvir/velpatasvir ± ribavirin	ano	ano	ano	ano	ano	
ombitasvir/paritaprevir/(r) + dasabuvir ± ribavirin *	ano	ne	ne	ne	ne	
ombitasvir/paritaprevir/(r) ± ribavirin *	ne	ne	ne	ano	ne	
grazoprevir/elbasvir ± ribavirin	ano	ne	ne	ano	ne	
sofosbuvir + daclatasvir ± ribavirin	ano	ano	ano	ano		
sofosbuvir + simeprevir ± ribavirin	suboptimální	ne	ne	ano	ne	
sofosbuvir+ledipasvir = HARVONI TM (Gileac sofosbuvir+velpatasvir = EPCLUSA TM (Gilea ombitasvir+paritaprevir = VIEKIRAX TM (Ab dasabuvir = EXVIERA TM (Abb Vie) grazoprevir+elbasvir = ZEPATIER TM (MSD)	d) dacla bVie) simep (r) =	tasvir = DAH revir = OLY: ritonavir	ALDI TM (Gilea KLINZA TM (B! SIO TM (Jansser svir+voxilapre	MS) n)	T™ (Gilead)	

HBV Testing/Monitoring During HCV DAA Therapy

- Test all pts initiating HCV therapy for HBsAg, anti-HBc, and anti-HBs
- Vaccinate if no HBV markers; follow flow chart below if HBV markers present

University of Liverpool hepatitis drug interactions website (HEP Drug Interaction Checker)

http://www.hep-druginteractions.org/

Management of Pts With HCV Who Achieved SVR

- SVR associated with myriad clinical benefits
- Mandatory to continue HCC surveillance post SVR in pts with F3/F4 fibrosis; ultrasound every <u>6 mos</u>
 - Consider assessing AFP levels as well for these pts
 - Less evidence to support continued screening of F0-F2 but remains a theoretical concern
- Indefinite screening for varices not warranted if varices absent at baseline: 1 more exam after SVR?
 - Surveillance of small varices if no other liver disease present requires further study but advisable
- Large varices require ongoing management and surveillance Routine monitoring for fibrosis regression not the standard of care; further studies may change this
- For pts with ongoing risk for HCV infection after SVR, counsel and test HCV RNA annually

Slide credit: <u>clinical options.com</u>

Main extrahepatic manifestations in pts with HCV infection (Ther Adv Infect Dis 2016;3(1):3-14)

- (Ther Adv Infect Dis 2016;3(1):3-14)
 Immune-related extrahepatic manifestations
 Mixed cryoglobulinemia
 Cryoglobulinemia
 Gryoglobulinemia
 Gryog

- .
- :
- Renal insufficiency Fatigue Cognitive impairment Depression Impaired quality of life Polyarthritis/Thromyalgia Cardiovascular disorders (i.e. stroke, ischemic heart disease)